| Updated: October 28, 2024 | 
Compute a Bessel function of the second kind of order 1
#include <math.h> double y1( double x ); float y1f( float x );
Your system requirements will determine how you should work with these libraries:
These functions compute the Bessel function for x of the second kind of order 1.
To check for error situations, use feclearexcept() and fetestexcept(). For example:
The result of the Bessel function for x of second kind of order 1.
| If x is: | These functions return: | Errors: | 
|---|---|---|
| Negative, including -Inf | NaN | FE_INVALID | 
| ±0.0 | -Inf | FE_DIVBYZERO | 
| NaN | NaN | — | 
| Inf | 0.0 | — | 
| If the correct result would cause: | These functions return: | Errors: | 
|---|---|---|
| Overflow | -Inf | FE_OVERFLOW | 
| Underflow | 0.0 | 
These functions raise FE_INEXACT if the FPU reports that the result can't be exactly represented as a floating-point number.
#include <stdio.h>
#include <math.h>
#include <fenv.h>
#include <stdlib.h>
int main( void )
{
    int except_flags;
    double x, y, z;
    feclearexcept(FE_ALL_EXCEPT);
    x = j0( 2.4 );
    except_flags = fetestexcept(FE_ALL_EXCEPT);
    if(except_flags) {
        /* An error occurred; handle it appropriately. */
    }
    feclearexcept(FE_ALL_EXCEPT);
    y = y1( 1.58 );
    except_flags = fetestexcept(FE_ALL_EXCEPT);
    if(except_flags) {
        /* An error occurred; handle it appropriately. */
    }
    feclearexcept(FE_ALL_EXCEPT);
    z = jn( 3, 2.4 );
    except_flags = fetestexcept(FE_ALL_EXCEPT);
    if(except_flags) {
        /* An error occurred; handle it appropriately. */
    }
    printf( "j0(2.4) = %f, y1(1.58) = %f\n", x, y );
    printf( "jn(3,2.4) = %f\n", z );
    return EXIT_SUCCESS;
}
y1() is POSIX 1003.1 XSI; y1f() is Unix
| Safety: | |
|---|---|
| Cancellation point | No | 
| Interrupt handler | Yes | 
| Signal handler | Yes | 
| Thread | Yes |